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Abstract

The backscattering of light by quasi-horizontally oriented hexagonal ice plates is investigated because of
its pertinence to lidar measurements of cirrus clouds. For oriented ice crystals, the commonly used geometric
optics ray-tracing method is not applicable to the computation of the scattered @eld in certain scattering direc-
tions, in particular, the backscattering direction, because of the singularity problem inherent to the ray-tracing
technique. In this study, we solve for the electric @eld due to scattering by quasi-horizontally oriented ice
plates using an approach based on the electromagnetic wave theory. We simplify the analysis by ignoring
the eAect of the plate’s side faces on the internal @eld inside the particle. This is a reasonable approximation
when the ratio of the particle diameter to its thickness is large. This approximation is also valid if the tilt
of the particle’s symmetric axis from zenith is small and the size parameter is large. The present numerical
results indicate that very strong oscillations in the backscattering cross section occur with the variation of
size parameter. Furthermore, the bulk backscattering intensity has been calculated by including the eAect of
a particle size distribution and the random tilt of particle symmetric axis within a small angular region, for
example, 2◦. A strong dependence is found between the lidar backscattering cross section and the degree of
the random tilt of the particles. A combination of the present method with the T-matrix method, which works
well for particles having small and moderate size parameters, may provide a more complete picture of the
lidar backscattering by quasi-horizontally oriented ice plates.
? 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Lidar; Backscattering; Ice plates; Cirrus clouds

∗ Corresponding author. Tel.: +1-979-845-4923; fax: +1-979-862-4466.
E-mail address: pyang@ariel.met.tamu.edu (P. Yang).

0022-4073/03/$ - see front matter ? 2003 Elsevier Science Ltd. All rights reserved.
doi:10.1016/S0022-4073(02)00346-1

mailto:pyang@ariel.met.tamu.edu


1140 P. Yang et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 79–80 (2003) 1139–1157

1. Introduction

Analyses based on the data from the Shuttle-based Lidar In-space Technology Experiment
(LITE) showed the utility of spaceborne lidar returns for the retrieval of the microphysical pro-
perties of cirrus clouds [1]. The upcoming Cloud-Aerosol Lidar and Infrared Path@nder Satellite
Observations (CALIPSO, previously named PICASSO-CENA) mission, featuring a two-
wavelength polarization sensitive lidar, an imaging infrared radiometer, and a wide @eld camera,
will provide an unprecedented data set for the study of global cirrus cloud properties
[2].

To interpret the data from spaceborne lidar, it is critically important to have a basic understanding
of the backscattering by ice crystals with various shapes (habits) and orientations in space. These
backscattering properties are useful to the identi@cation of cloud phase [3]. A thorough understand-
ing of the backscattering properties helps improve various aspects of CALIPSO lidar algorithms,
such as calibration of 1064-nm channel and estimation of the extinction to backscattering ratio to be
used in backscatter and extinction retrievals, as well as the treatment of multiple scattering. Previous
ground-based lidar studies [4,5] have shown that cirrus clouds can produce enhanced backscattering.
Theoretical studies have investigated the issue of backscattering enhancement by using the T-matrix
method [6] and ray optics (e.g., [7]) to calculate the optical properties of plate ice particles. The
ray-tracing technique can explain certain aspects of lidar backscattering characteristics of ice crys-
tals [7]. However, it is not always appropriate to apply the ray optics method to the backscattering
calculations because of the inherent singularity involved in ray optics, known as delta transmissi-
tion/reMection, noted by Takano and Liou [8] and by Mishchenko and Macke [9]. To circumvent
the shortcomings of the ray optics approach, a recent study by Iwasaki and Okamoto [10] treats
backscattering as an external reMection that is mapped to the far @eld on the basis of KirchhoA’s
diAraction approximation (KDA). It has been suggested by Stratton and Chu [11] that KDA is not
mathematically well posed as either a Dirichlet problem or a Neumann problem. In addition, in
Iwasaki and Okamoto’s [10] analysis, the eAect of the multiple internal reMections is ignored. As
a result, the applicability of the KDA method may be limited because of the inaccuracy inherent
to KDA.

The present study of lidar backscattering by quasi-horizontally oriented ice plates is based on
the understanding that the eAect of side faces is insigni@cant if the tilt angle of the particle
c-axis from the zenith is small and the size parameter is large (¿ 50). In this case, the in-
ternal @eld inside an ice crystal can be calculated analytically by applying the electromagnetic
boundary conditions at two basal faces of the particle; subsequently, the internal @eld can be
mapped to the far @eld in any scattering direction without introducing extra errors. Based on
this analysis, the backscattering and depolarization properties of horizontally oriented ice plates
are studied, especially for the ice crystals with large size parameters. This study, combined with
a T-matrix solution [6,12] that works well for particles of small and moderate size parameters,
will provide a much more complete picture of the backscattering properties of ice crystals. This
paper is organized as follows. In Section 2, we present the theoretical basis for the light scat-
tering computation associated with nearly horizontally oriented plates. In Section 3, we present
numerical computation and discussions. Finally, the conclusions of this paper will be given in
Section 4.
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2. Theoretical basis

2.1. Coordinate systems

In this study, we consider the scattering of an electromagnetic wave by a hexagonal plate for
which the symmetric axis is nearly vertically oriented. To calculate the scattering properties of the
scattering particle, proper coordinate systems must be de@ned for the particle morphology and for the
incidence and scattering con@gurations. The two diagrams in the @rst row of Fig. 1 show a coordinate
system OXpYpZp that is con@ned to the scattering particle. This coordinate system rotates with the
particle if the particle rotates, and is hereafter referred to as the particle system. Diagram (C) in
Fig. 1 shows the relative orientation of the scattering coordinate system OXsYsZs with respect to a
spatially @xed coordinate system or the so-called laboratory reference frame OXYZ. The coordinate
axis OZs denotes the scattering direction and is con@ned to the plane YOZ in the present study.
Diagrams (D)–(F) in Fig. 1 illustrate the transformation from the laboratory reference frame to that
of the particle system. OXrYrZr and OX ′

pY
′
pZ

′
p are two intermediate coordinate systems de@ned for the

transformation from OXYZ to OXpYpZp. Note that we allow the symmetric axis of the particle to
randomly rotate around OZ axis in this study and hence ’p is a random variable. To account for the
azimuthal dependence of scattered @eld, it is equivalent to either rotate the particle with respect to
the spatially @xed laboratory system or to vary the azimuthal angle of the scattering plane. The angle
	p, de@ned as a random variable distributed between 0 and 
=3, denotes the rotation of the particle
around its symmetric axis. Transformations between two of the four coordinate systems shown in
Fig. 1 can be given as follows:

(xp; yp; zp)T = �1(x′p; y
′
p; z

′
p)

T; (1a)

(x′p; y
′
p; z

′
p)

T = �2(xr ; yr ; zr)T (1b)

(xr ; yr ; zr)T = �3(x; y; z)T; (1c)

(x; y; z)T = �4(xs; ys; zs)T; (1d)

where the superscript T denotes matrix transpose. The four rotational matrices involved in Eqs.
(1a)–(1d) are given by

�1 =




cos 	p sin 	p 0

−sin 	p cos 	p 0

0 0 1


 ; (1e)

�2 =



1 0 0

0 cos �p −sin �p

0 sin �p cos �p


 ; (1f)

�3 =




cos’p sin’p 0

−sin’p cos’p 0

0 0 1


 ; (1g)



1142 P. Yang et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 79–80 (2003) 1139–1157

Fig. 1. Coordinate systems de@ned for particle, incidence geometry and scattering con@guration. OXpYpZp is particle
geometry de@ned as being @xed with respect to the scattering particle. OXYZ is a spatial coordinate system with z-axis
along the propagating direction of the incident wave. OXsYsZs is the scattering system, and OXrYrZr and OX ′

pY
′
pZ

′
p the

intermediate coordinate systems for the transformation between OXpYpZp and OXsYsZs.

�4 =



1 0 0

0 cos �s sin �s

0 −sin �s cos �s


 : (1h)

Accordingly, the transformation between the scattering system and the particle system is given by

(xp; yp; zp)T = �(xs; ys; zs)T; (2a)
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Fig. 2. Three spatial regions for incident and induced (scattered) electromagnetic @elds associated with the scattering of
an electromagnetic wave by a quasi-horizontally oriented hexagonal plate.

where

� =



�11 �12 �13

�21 �22 �23

�31 �32 �33


= �1�2�3�4: (2b)

2.2. Upward and downward electromagnetic waves inside particle

The present computation focuses on the scattering of the incident lidar beam. The incident beam is
assumed to be vertically upward radiation. Under the condition that the tilt of c-axis of a hexagonal
plate (i.e., �p) from the local zenith is small, the eAect of the side faces of the particle can be
neglected in solving the internal @eld if the size of the particle is much larger than the incident
wavelength or the aspect ratio (i.e., L=a) is small. This can be illustrated in the case when �p = 0.
The propagation of the incident wave can be regarded as the propagation of geometric rays if the
size of the particle is much larger than the incident wavelength. If �p = 0, there are no interactions
between the side faces and the rays because of the speci@c particle orientation with respect to the
incident direction. Thus, in the geometric optics regime the eAect of the side faces is insigni@cant
if �p is small. On the other hand, the incident wave cannot be regarded as being composed of a
number of rays if the size parameter is small. In this case, the side faces can aAect the internal @eld.
However, the eAect of side faces is much smaller than the eAect of basal faces if the aspect ratio,
L=a, of the particle is small. Because we deal with the scattering of ice crystals at lidar wavelengths
for which the size parameters are normally large, we can ignore the eAect of side faces for nearly
horizontally orientated ice plates.

In the aforementioned situation, there are three distinct regions that are de@ned with respect to
the particle system for the electromagnetic @eld, as shown in Fig. 2. For the region below the basal
face of the particle, the @eld is composed of the incident @eld and reMected @eld. The reMected @eld
contains a component that undergoes the multiple internal reMection inside the particles. For the
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region above the upper basal face, the @eld is associated with transmitted wave that also includes
the multiple internal reMection eAect. Inside the particle, the total electromagnetic wave can be
decomposed into an upward propagating wave and a downward traveling wave. Because the phase
must be continuous for these waves at the boundaries (i.e., the upper and lower basal faces), the
electric @elds expressed with respect to the particle system can be written in a form similar to that
in [13] as follows:

Ei(xp; yp; zp) = (Eioxx̂p + Eioyŷ p + Eiozẑp) exp{ik(−sin �iyp + cos �izp)}; (3a)

Er(xp; yp; zp) = (Eroxx̂p + Eroyŷ p + Erozẑp) exp{ik(−sin �iyp − cos �izp)}; (3b)

Eu(xp; yp; zp) = Euoxx̂p + Euoyŷ p + Euozẑp) exp{−ik[Nr sin �typ − (Nr cos �t + iNn)zp]}; (3c)

Ed(xp; yp; zp) = (Edoxx̂p + Edoyŷ p + Edozẑp) exp{−ik[Nr sin �typ + (Nr cos �t + iNn)zp]}; (3d)

Et(xp; yp; zp) = (Etoxx̂p + Etoyŷ p + Etozẑp) exp{ik(− sin �iyp + cos �izp)}; (3e)

where x̂p, ŷ p, and ẑp are unit vectors along the three coordinate axes of the particle system. k=2
=�
is the wave number of the incident wave, with � being the incident wavelength in vacuum. Note
that the time dependence is assumed to be exp(−i!t) for a harmonic electromagnetic wave in this
study. Nr and Nn are eAective refractive index. According to the study by Yang and Liou [14], these
two parameters are given by

Nr = 2−1=2{m2
r − m2

i + sin2 �i + [(m2
r − m2

i − sin2 �i)2 + 4m2
rm

2
i ]

1=2}1=2; (4a)

Nn = 2−1=2{−(m2
r − m2

i − sin2 �i) + [(m2
r − m2

i − sin2 �i)2 + 4m2
rm

2
i ]

1=2}1=2; (4b)

where mr and mi are the real and imaginary parts of the refractive index, respectively. The parameter,
�i, is the incident angle for the initial wave at the basal face, which is equal to the tilt of the particle
for the incident geometry considered in this study:

�i = �p: (5a)

The angle, �t , is the angle of refraction at the basal face and is given by

sin �t = sin �i=Nr : (5b)

The electric and magnetic @elds are associated with each other via Maxwell’s equations as follows:

H =
1
ik
∇× E; (6a)

E=− 1
ik�

∇×H; (6b)

where the parameter � is permittivity, given by

�= (m2
r − m2

i ) + i2mrmi: (6c)

The electric @elds in Eqs. (3b)–(3e) can be determined in terms of the incident @eld speci@ed by
Eq. (3a) based on the boundary conditions at two basal faces.
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At the lower boundary (i.e., the lower basal face of the hexagonal plate):

ẑp × (Ei + Er − Eu − Ed) = 0 and ẑp × (Hi +Hr −Hu −Hd) = 0: (7a)

At the upper boundary (i.e., the upper basal face of the hexagonal plate):

ẑp × (Et − Eu − Ed) = 0 and ẑp × (Ht −Hu −Hd) = 0: (7b)

The incident @eld can be expressed in terms of two components, Ei;p;‖ and Ei;p;⊥, which are parallel
and perpendicular to the incident plane OZZp (see Fig. 2), respectively. Using Eqs. (3a)–(3e), (6a),
(6b), (7a) and (7b), the electric @eld inside the particle can be given as


Euox

Euoy

Euoz


=




0 Tuox

Tuoy 0

Tuoz 0




[
Ei;p;‖
Ei;p;⊥

]
; (8a)



Edox

Edoy

Edoz


=




0 Tdox

Tdoy 0

Tdoz 0




[
Ei;p;‖
Ei;p;⊥

]
: (8b)

The elements of the two transformation matrices in the preceding equations are given by

Tuox =
2 cos �i(Nr cos �t + iNn + cos �i) exp[− ik(Nr cos �t + iNn + cos �i)L=2]

Ta
; (9a)

Tdox =
2 cos �i(Nr cos �t + iNn − cos �i) exp[ik(Nr cos �t + iNn − cos �i)L=2]

Ta
; (9b)

Tuoy=
2 cos �i(Nr cos �t+iNn)(� cos �i +Nr cos �t+iNn) exp[− ik(cos �i +Nr cos �t+iNn)L=2]

Tb
;

(9c)

Tdoy=
2 cos �i(Nr cos �t+iNn)(� cos �i−Nr cos �t− iNn) exp[− ik(cos �i−Nr cos �t− iNn)L=2]

Tb
;

(9d)

Tuoz =
2 cos �i sin �i(� cos �i + Nr cos �t + iNn) exp[− ik(cos �i + Nr cos �t + iNn)L=2]

Tb
(9e)

Tdoz =−2 cos �i sin �i(� cos �i − Nr cos �t − iNn) exp[− ik(cos �i − Nr cos �t − iNn)L=2]
Tb

; (9f)

where

Ta = (cos �i + Nr cos �t + iNn)2 exp[− ik(Nr cos �t + iNn)L]

−(cos �i − Nr cos �t − iNn)2 exp[ik(Nr cos �t + iNn)L]; (9g)
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Tb = (� cos �i + Nr cos �t + iNn)2 exp[− ik(Nr cos �t + iNn)L]

−(� cos �i − Nr cos �t − iNn)2 exp[ik(Nr cos �t + iNn)L]: (9h)

When the particle is absorptive (i.e., mi �= 0), the electromagnetic wave inside the particle can be
inhomogeneous, that is, the planes of wave phase contours are not parallel to the planes of wave
amplitude contours. In this case, the electromagnetic wave may not be transverse with respect to the
propagating direction of refracted wave, even in the geometric optics regime. It should be pointed
out that the inhomogeneity of the wave has been fully accounted for in Eqs. (8) and (9).

2.3. Scattered Deld in far-Deld region

The scattered @eld in the radiation zone or the far-@eld region can be calculated in terms of the
near-@eld scattering inside the particle (c.f., [15,16]) as follows:

*
Es(

*
r )|kr→∞ =

k2eikr

4
r
(�− 1)

∫∫∫
v
{*E(*r ′)− r̂[r̂ · *E(*r ′)]}e−ikr̂·*r ′

d3r′; (10)

where the integral domain, v, is the volume occupied by the scattering particle, and r̂ = r=|r| is the
scattering direction. Note that the scattering direction r̂ is selected as ẑs in the present study, which
can be expressed with respect to the particle system as follows:

r̂ = �13x̂p + �23ŷ p + �33ẑp: (11)

The scattered @eld in the radiation zone (i.e., the far-@eld region) is a transverse wave with respect
to its propagating direction. Thus, we can decompose the corresponding electric @eld into two com-
ponents that are parallel and perpendicular to the scattering plane (i.e., the OZZs plane in diagram
D of Fig. 1) as follows:

Es = Es
‖ŷ s + Es

⊥x̂s: (12)

According to Eqs. (3c), (3d), (8a), (8b), (10)–(12), the scattered far-@eld can be written in the
form

[
Es
‖

Es
⊥

]
=
k2 exp(ikr)(�− 1)

4
r

∫∫∫
v

[
ŷ s · x̂p ŷ s · ŷ p ŷ s · ẑp
x̂s · x̂p x̂s · ŷ p x̂s · ẑp

]





0 Tuox

Tuoy 0

Tuoz 0




×exp[ik(Nr cos �t + iNn)zp]

+




0 Tdox

Tdoy 0

Tdoz 0


 exp[− ik(Nr cos �t + iNn)zp]




[
Ei;p;‖
Ei;p;⊥

]

×exp(−ik sin �pyp) exp[− ik(�13xp + �23yp + �33zp)] dxp dyp dzp: (13)
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The decomposed components of the incident @eld in OXYZ and OXrYrZr systems are related via
the following expression:

Ei = Ei
‖ŷ + Ei

⊥x̂ = Ei;p;‖ŷ r + Ei;p;⊥x̂r ; (14)

or, in a matrix form as follows[
Ei;p;‖
Ei;p;⊥

]
=

[
ŷ r · ŷ ŷ r · x̂
x̂r · ŷ x̂r · x̂

][
Ei
‖

Ei
⊥

]
=

[
cos’p −sin’p

sin’p cos’p

][
Ei
‖

Ei
⊥

]
: (15)

Thus, the scattered @eld can be expressed in terms of incident @eld through the transformation of
the scattering matrix as follows:[

ES
‖

ES
⊥

]
=

exp(ikr)
−ikr

[
S2 S3

S4 S1

][
Ei
‖

Ei
⊥

]
; (16a)

where the scattering matrix is given by[
S2 S3

S4 S1

]
=

−ik3(�− 1)
4


∫∫∫
v

[
�12 �22 �32

�11 �21 �31

]

×







0 Tuox

Tuoy 0

Tuoz 0


 exp[ik(Nr cos �t + iNn)zp]

+




0 Tdox

Tdoy 0

Tdoz 0


 exp[− ik(Nr cos �t + iNn)zp]




[
cos’p −sin’p

sin’p cos’p

]

×exp(−ik sin �pyp) exp[− ik(�13xp + �23yp + �33zp)] dxp dyp dzp: (16b)

The volume integration involved in Eq. (16b) can be analytically solved for a hexagonal plate.
Accordingly, an explicit form of the scattering matrix can be obtained as follows:[

S2 S3

S4 S1

]

=
−√

3k3(�− 1)a2L
8


f

×
{
Su

exp(−kNnL=2) exp[ik(Nr cos �t−�33)L=2]−exp(kNnL=2) exp[− ik(Nr cos �t−�33)L=2]
k(Nr cos �t−�33)L+ikNnL

+Sd
exp(−kNnL=2) exp[ik(Nr cos �t+�33)L=2]−exp(kNnL=2) exp[− ik(Nr cos �t+�33)L=2]

k(Nr cos �t+�33)L+ikNnL

}
;

(17a)
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where

f=exp{−i[�13 +
√
3(sin �p + �23)]ka=4} · sin(�13ka=2)

�13ka=2
· sin{[R13 −

√
3(sin �p + �23)]ka=4}

[�13 −
√
3(sin �p + �23)]ka=4

+ exp(i�13ka=2)
sin{[�13 −

√
3(sin �p + �23)]ka=4}

[�13 −
√
3(sin �p + �23)]ka=4

· sin{[�13 +
√
3(sin �p + �23)]ka=4}

[�13 +
√
3(sin �p + �23)]ka=4

+ exp{−i[�13 −
√
3(sin �p + �23)]ka=4} · sin(�13ka=2)

�13ka=2

×sin{[�13 +
√
3(sin �p + �23)]ka=4}

[�13 +
√
3(sin �p + �23)]ka=4

; (17b)

Su =

[
�12 �22 �32

�11 �21 �31

]
0 Tuox

Tuoy 0

Tuoz 0



[
cos’p −sin’p

sin’p cos’p

]
; (17c)

Sd =

[
�12 �22 �32

�11 �21 �31

]
0 Tdox

Tdoy 0

Tdoz 0



[
cos’p −sin’p

sin’p cos’p

]
: (17d)

2.4. Single-scattering properties

After the scattering matrix is calculated, it is straightforward to calculate the single-scattering
properties of the particle. The extinction and scattering cross sections depend on the con@guration of
incident polarization. However, if the extinction cross section is averaged for the incident polarization,
it can be given by

&ext =
1
2
(&ext;‖ + &ext;⊥) =

2

k2
Re{S1(0) + S2(0)}: (18)

In Eq. (18), &ext;‖ and &ext;⊥ denote the extinction cross sections for parallel and perpendicular
polarization, respectively. Similarly, for the scattering cross section, we have

&sca =
1
2
(&sca;‖ + &sca;⊥)

=
1
2k2

∫ 


0

∫ 2


0
(|S1|2 + |S2|2 + |S3|2 + |S4|2) sin �p d�p d’p: (19)

The projected area of the hexagonal particle is

A= 2aL sin �p +
3
√
3

2
a2 cos �p: (20)

The extinction and scattering eSciencies are thus given by

Qext = &ext=A and Qsca = &sca=A: (21)
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The transformation of the incident to the scattered Stokes vectors is given by

Is

Qs

Us

Vs


=

&sca
4
r2

P11




1 P12=P11 P13=P11 P14=P11

P21=P11 P22=P11 P23=P11 P24=P11

P31=P11 P32=P11 P33=P11 P34=P11

P41=P11 P42=P11 P43=P11 P44=P11






Ii

Qi

Ui

Vi


 ; (22)

where the de@nition of the phase matrix follows those of van de Hulst [17]. In Eq. (22) the @rst
phase matrix element, P11, is the normalized phase function given by

P11 =
2


k2&sca
(|S1|2 + |S2|2 + |S3|2 + |S4|2): (23)

After the normalized phase function is calculated, the lidar backscattering is given by

&b = &sca · P11(�s = 180◦): (24)

If the incident beam is unpolarized, that is Qi=Ui=Vi=0, we can de@ne the degree of polarization
(DP), the degree of linear polarization (DLP), and the degree of circular polarization (DCP) for the
scattered wave as follows [18]:

DP =

√
Q2

s + U 2
s + V 2

s

Is
=
(
P2
21 + P2

31 + P2
41

P2
11

)1=2

; (25)

DLP =−Qs

Is
=−P21

P11
; (26)

DCP =
V
I
=
P41

P11
: (27)

Most lasers generate linearly polarized radiation (i.e., Ii=Qi and Ui=Vi=0). The linear depolarization
ratio is

1L =
Is − Qs

Is + Qs
=
P11 + P12 − P21 − P22

P11 + P12 + P21 + P22
: (28)

In this study, we only consider the degree of linear polarization and the linear depolarization ratio
in numerical computation.

3. Numerical results and discussions

For the ice plates involved in the present scattering calculation, the following relationship given
by Pruppacher and Klett [19] is used:

L= 2:4883a0:474; 5 �m6 a6 1500 �m; (29)

where L denotes plate thickness, and a denotes the semi-width of the particle cross section. Eq. (29)
is the same as Eq. (4) in [20], but the units used in the present equation are microns.

Fig. 3 shows the phase function values for plates with a size of D=L = 50 �m=10 �m where D
is the diameter of the cross section and L the thickness of the plate. The wavelength is 0:532 �m,
and the corresponding refractive index is 1:3117 + i2:6138× 10−9. The short horizontal bars in the
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Fig. 3. The phase function of ice plates for two incident con@gurations (�= 0◦ and 5◦) and view geometry with particle
size of D=L= 50 �m=10 �m. The horizontal bars indicate the values of the phase function in forward and backscattering
directions.

diagrams indicate the magnitudes of the phase functions in the forward and backscattering directions.
The upper two panels are for the case when the symmetric axis of the particle is exactly vertically
oriented. The lower two panels are for the case when the symmetric axis of the particle is tilted 5◦
from zenith. For speci@cally oriented particles, the scattered @eld depends not only on the scattering
zenith angle but also on the azimuthal angle of the scattering plane. As evident from results shown
in Fig. 3, the side scattering for the case with ’p = 90◦ is much smaller than for the case with
’p =0◦. The scattering peak around 170◦ in the case of �p =5◦ and 90◦ corresponds to the specular
reMection of the incident light by the base face of the plate. One striking feature shown in Fig. 3
is the rapid oscillation of phase function versus the scattering angle, which is caused by the phase
interference. This behavior is absent in the results derived from conventional ray-tracing techniques,
in particular, by those numerical ray-tracing algorithms that ignore the phase interference. This phase
interference pattern has been noted in the exact T-matrix results [6]. It should also be pointed out
that the phase function derived from the ray-tracing technique for horizontally oriented plates is a
superposition of the diAraction contribution and two Dirac delta functions, 1(�) and 1(� − 
). This
discontinuity is unrealistic and is inherent to the ray-tracing method.

Fig. 4 is the same as Fig. 3, except that the size of the plate is D=L=100 �m=15 �m for Fig. 4. It
is evident from the comparison of the two diagrams that an increase of particle size can substantially
change the magnitude of the phase function in the side and backscattering directions. However, the
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Fig. 4. Same as Fig. 3, except that the size is D=L= 100 �m=15 �m.

feature related to phase interface shows up when the symmetric axis of the particle is tilted away from
zenith. At the 0:532 �m wavelength, absorption is negligible. Unlike the results calculated by the
present method, the phase function derived from the conventional ray-tracing method is essentially
independent of particle size in the side and backscattering directions. From Figs. 3 and 4, it can be
seen that the backscatter at exactly 180◦ is sensitive to the tilt of the plates. A tilt of 5◦ can reduce
the backscatter by a few orders in magnitude.

Fig. 5 shows the backscatter cross section, degree of linear polarization, and depolarization ratio
for three tilt angles. 0◦, 2◦, and 5◦. The oscillations associated with the resonant eAect are evident
from the variation of backscattering intensity versus particle size. In addition, the backscattering
intensity is very sensitive to the tilt of the particle symmetric axis. As expected, the depolarization
ratio of horizontally oriented plates is not signi@cant.

To smooth out the resonant eAect associated with the scattering by individual particles, we use a
size distribution speci@ed by a gamma function, given by

n(D) = N0D2 exp(−2D=Dm); (30)

where N0 is the total number of ice crystals in a unit volume; D is the maximum crystal dimension,
and Dm is the modal size. Note that the analytical size distribution given by Eq. (30), if the
parameters are speci@ed properly, can be used to approximate in situ size distributions in some
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Fig. 5. The variations of backscattering cross sections, the degree of linear polarization, and depolarization versus particle
size for three tilting angles: 0◦, 2◦, and 5◦.

cases. For example, the size distribution observed on November 25, 1991 during the First ISCCP
Regional Experiment (FIRE) phase II can be well represented by analytical expression given in
Eq. (30), as is evident from Fig. 6.

It is common to de@ne an eAective size distribution as follows (e.g., [21]):

De =
3
2

∫ D2

D1
V (D)n(D) dD∫ D2

D1
A(D)n(D) dD

; (31)

where V is the volume and A is the projected area of a ice crystal of the size of D. The bulk optical
properties are mainly determined by the eAective size, as is illustrated by Wyser and Yang [22]. The
projected area of horizontally oriented plates can be larger relative to particle volume than randomly
oriented plates. In addition, the eAective size of horizontally oriented plates also depends on the
random tilt of the particles. Fig. 7 shows the relationship between mean diameter and eAective size
for randomly tilted plates. The angle T�p is the maximum magnitude of random tilt for the particles.
Evidently, the diAerence between the eAective sizes calculated for T�p = 2◦ and 5◦ are essentially
insigni@cant because of a small variation of the projected area. From Fig. 7, it can also be noted
that the eAective size can be small for a large mean diameter.

The CALIPSO lidar employs two wavelengths: 0.532 and 1:064 �m. The 0:532 �m channel is
calibrated using molecular backscatter in the mid stratosphere (assumed free of aerosols); however,
the 1:064 �m channel is diScult to calibrate by the same method due to a much lower signal-to-noise
ratio for that region. Cloud backscatter signals can be used to transfer calibration from the 0.532 to
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Fig. 6. The comparison between a gamma function with
an in situ size distribution obtained during FIRE-II @eld
campaign.

Fig. 7. The variation of mean diameter versus the eAective
diameter for maximum titling angles of T�p = 2◦ and 5◦.

the 1064 �m channel if the single-scattering properties at the two wavelengths are well characterized.
Fig. 8 shows the comparison of the mean extinction eSciencies at 0.532 and 1:064 �m wavelengths
and the relative diAerence as functions of the eAective size. The refractive indices for these two
wavelengths are 1:3117+i2:6138×10−9 and 1:3004+i1:933×10−6, respectively. For eAective sizes
larger than approximately 20 �m, the extinction eSciencies at these two wavelengths are essentially
the same. For small eAective sizes (less than approximately 10 �m), a diAerence on the order of
10% is noticed for the two extinction eSciencies.

Fig. 9 shows the backscattering cross section and backscattering eSciency (the ratio of backscat-
tering cross section to projected area) at 0.532 and 1:064 �m wavelengths. For a given particle
size, the size parameter for 1:064 �m is twice of that for 0:532 �m. Additionally, the absorption
of radiation by ice crystals is slightly larger for 1:064 �m wavelength. The overall variation pat-
terns for these two wavelengths are similar. However, the backscattering eSciency for the 1:064 �m
wavelength is larger. The backscattering cross section increases with the increase of eAective size
because the average projected area of particles increases with the eAective size. The backscattering
eSciency, however, decreases with the increase of the eAective size, which is mainly due to the
destructive phase interference that is more signi@cant for large size parameters as well as stronger
forward scattering for larger plates.

In situ measurement of 180◦ backscattering is very challenging, if not impossible. Measurements at
angles close to 180◦ (e.g., 179◦) are made instead for estimating the lidar ratio. It is known that 180◦
backscattering for spherical ice particles at visible and near-IR wavelengths is much stronger than the
backscattering at an angle slightly diAerent from 180◦. Our model predicts similar behavior for ice
particles. Fig. 10 shows the ratio of phase function at 179:9◦ and 179:5◦ to the phase function value
in the exact 180◦ backscattering direction. It can be seen that the scattered intensity is substantially
reduced if the observation is made in a direction tilted slightly away from the exact backscattering
direction. In addition, for eAective sizes larger than approximately 30 �m, the ratio tends to reach its
asymptotic value with respect to the variation of the eAective size. In practice, lidar returns have a
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Fig. 8. The bulk extinction eSciency computed for 0.532 and 1:064 �m wavelengths. Also shown are the relative diAerence
of the extinction eSciencies for the two wavelengths.

certain @eld of view, and it is critical to average the backscattering intensity over the @eld of view,
as is discussed by Iwasaki and Okamoto [10].

4. Summary

We investigate the backscattering of light by quasi-horizontally oriented hexagonal ice plates
because of its importance to lidar measurements of cirrus clouds. For the case of oriented ice
crystals, a singularity problem in the geometric optics ray-tracing method limits its capability for
the computation of the scattered @eld in certain scattering directions, particularly for the case of
direct backscattering. To overcome the shortcomings of ray-tracing techniques for light scattering
calculations involving horizontally oriented ice plates, we have developed a computational method
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Fig. 9. The bulk backscattering cross section and eSciency as functions of eAective size for 0.532 and 1:064 �m wave-
lengths.

that is based on electromagnetic wave theory. The approximation involved neglects the eAect of the
plate’s side faces on the internal @eld calculation. Numerical computations have been carried out
for the backscattering cross section and scattering polarization con@guration for ice plates that are
nearly horizontally oriented. The scattering computational algorithm developed in this study may be
useful in computation of the enhanced lidar backscattering by ice plates.

While the extinction cross sections at the 532 and 1064 nm wavelengths are almost the same for
plates larger in eAective size than 20 �m, the backscattering cross sections at the two wavelengths
are diAerent. Single scattering at 1064 nm is stronger than at 532 nm. On the other hand, the delta
transmission at 532 nm is larger than at 1064 nm. For ice clouds, lidar backscatter is due primarily to
single scattering (direct backscattering) and double scattering (one forward scattering event plus one
backscattering event). The backscattering cross section alone cannot reveal whether the backscattering
at the two wavelengths are of the same magnitude for ice clouds of moderate to relatively high ice
particle density. We will continue to investigate the relative magnitude of backscatter at the two
wavelengths and the implication for cross calibration of the two CALIPSO lidar channels with an
ongoing Monte Carlo multiple scattering simulation study.

In the atmosphere, the ice crystals in cirrus clouds have various particle habits. Ice columns (in
particular, large columns) tend to orient with their c-axis in horizontal planes. We are currently in-
vestigating the scattering properties of horizontally oriented column ice crystals and their applications
to active remote sensing based on lidar returns in a related ongoing study.
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Fig. 10. The ratio of phase function values at scattering angles 179:9◦ and 179:5◦ to the phase function value at exact
backscattering (180◦).
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